Transient and Long-Term Changes in Seismic Response of the Natural Resources Building, Olympia, Washington, due to Earthquake Shaking

نویسندگان

  • PAUL BODIN
  • JOHN VIDALE
  • TIMOTHY WALSH
  • RECEP ÇAKIR
چکیده

The Natural Resources Building (NRB) in Olympia, Washington, was shaken by three earthquakes (Mw = 5.8, 6.8, and 5.0) between 1999 and 2001. Building motions were recorded on digital accelerographs, providing important digital recordings of repeated strong shaking in a building. The NRB has 5-stories above grade with 3 sub-grade levels and a ductile steel-frame elongated in the E-W direction. The upper two floors extend significantly beyond the lower 3 on the southern and eastern sides. N-S motions dominate the fundamental modal vibrations of the building system. In the 1999 Satsop M5.8 earthquake, the frequency of this fundamental system mode was 1.3 Hz during motions of 10% g. The frequency dropped to 0.7 Hz during the 2001 M6.8 Nisqually strong motions. Moreover, the Nisqually recordings reveal both numerous high-frequency transients of up to 0.18 g, several of which are visible on widely spaced sensors, and long-term tilts of some of the sensors. The weaker 2001 M5.0 Satsop earthquake motions showed the frequency remained depressed at less than 1 Hz for the eastern side of the structure, although the western side had recovered to 1.3 Hz. An ambient noise survey in 2008 showed the fundamental frequency of N/S vibrations remains about 1.0 Hz for the eastern side of the building and 1.3 Hz for the western side. These results suggest that in the Nisqually earthquake, the east side of the NRB suffered a permanent reduction in fundamental mode frequency of 37% due to loss of system stiffness by undetermined mechanism.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Earthquake induced Deterministic Damage and Economic Loss Estimation for Kolkata, India

The city of Kolkata, the State Capital of West Bengal is jolted by earthquakes time and again from the tectonic regimes of the Central Himalaya, highly seismogenic Northeast India and the active tectonics of Bengal Basin which is a pericratonic tertiary basin on which the City is located. Earthquake disaster mitigation and management necessitates seismic hazard assessment for the generation of ...

متن کامل

Evaluation of Seismic Vulnerability of Reinforced Concrete Buildings Adjacent to the Deep Excavations

In this study, the effect of deep excavation on the seismic response of RC moment resisting building systems has been studied. Deep excavation can cause significant changes in the stress and strain levels of soil environment and also changes in the propagation of seismic waves. This leads to permanent displacements in the foundation system. In this study, three RC building systems, i.e. 5, 10, ...

متن کامل

An Analysis Method on Post-earthquake Traversability of Road Network Considering Building Collapse

This study aims at quantifying the influence on the traversability of road network of road network caused by building collapse in earthquake. To this end, an analysis method on post-earthquake traversability of road network considering building collapse is proposed. First, the time-history analysis of seismic response based on the multi-degree of freedom (MDOF) model is performed for regional b...

متن کامل

Influence of the Isolator Characteristics on the Response of the Isolated Buildings in the Near-FaultEarthquakes

Seismic base isolation are devices that used to limit the human and material damage caused by an earthquake. This devices diffuse the energy induced at the time of the earthquake before being transferred to the structure.The base isolated structures when subjected to the near-fault eathquakes which contain long-period velocity pulses that may coincide with the period of base isolated structures...

متن کامل

Characterizing Long-Period Ground Motions Using Bayesian Model Class Selection

National (or regional) seismic hazard maps, determined from probabilistic seismic hazard analysis, quantify the expected intensity of shaking in a region(s) over the course of one or more desired time interval(s). Building codes use these maps to define the lateral force levels for the design of new and the retrofit of existing structures. In the past, the maps depicted the shaking intensity me...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012